3.1256 \(\int \frac {a+b \tan (e+f x)}{(c+d \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=138 \[ \frac {2 (b c-a d)}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}-\frac {(b+i a) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{f (c-i d)^{3/2}}+\frac {(-b+i a) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{f (c+i d)^{3/2}} \]

[Out]

-(I*a+b)*arctanh((c+d*tan(f*x+e))^(1/2)/(c-I*d)^(1/2))/(c-I*d)^(3/2)/f+(I*a-b)*arctanh((c+d*tan(f*x+e))^(1/2)/
(c+I*d)^(1/2))/(c+I*d)^(3/2)/f+2*(-a*d+b*c)/(c^2+d^2)/f/(c+d*tan(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3529, 3539, 3537, 63, 208} \[ \frac {2 (b c-a d)}{f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}-\frac {(b+i a) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{f (c-i d)^{3/2}}+\frac {(-b+i a) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{f (c+i d)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x])/(c + d*Tan[e + f*x])^(3/2),x]

[Out]

-(((I*a + b)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/((c - I*d)^(3/2)*f)) + ((I*a - b)*ArcTanh[Sqrt[c
 + d*Tan[e + f*x]]/Sqrt[c + I*d]])/((c + I*d)^(3/2)*f) + (2*(b*c - a*d))/((c^2 + d^2)*f*Sqrt[c + d*Tan[e + f*x
]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {a+b \tan (e+f x)}{(c+d \tan (e+f x))^{3/2}} \, dx &=\frac {2 (b c-a d)}{\left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {\int \frac {a c+b d+(b c-a d) \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{c^2+d^2}\\ &=\frac {2 (b c-a d)}{\left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {(a-i b) \int \frac {1+i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{2 (c-i d)}+\frac {(a+i b) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{2 (c+i d)}\\ &=\frac {2 (b c-a d)}{\left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {(i a+b) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 (c-i d) f}-\frac {(i a-b) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 (c+i d) f}\\ &=\frac {2 (b c-a d)}{\left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}-\frac {(a-i b) \operatorname {Subst}\left (\int \frac {1}{-1-\frac {i c}{d}+\frac {i x^2}{d}} \, dx,x,\sqrt {c+d \tan (e+f x)}\right )}{(c-i d) d f}-\frac {(a+i b) \operatorname {Subst}\left (\int \frac {1}{-1+\frac {i c}{d}-\frac {i x^2}{d}} \, dx,x,\sqrt {c+d \tan (e+f x)}\right )}{(c+i d) d f}\\ &=-\frac {(i a+b) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{(c-i d)^{3/2} f}+\frac {(i a-b) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{(c+i d)^{3/2} f}+\frac {2 (b c-a d)}{\left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.20, size = 113, normalized size = 0.82 \[ \frac {i \left (\frac {(a-i b) \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {c+d \tan (e+f x)}{c-i d}\right )}{c-i d}-\frac {(a+i b) \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {c+d \tan (e+f x)}{c+i d}\right )}{c+i d}\right )}{f \sqrt {c+d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[e + f*x])/(c + d*Tan[e + f*x])^(3/2),x]

[Out]

(I*(((a - I*b)*Hypergeometric2F1[-1/2, 1, 1/2, (c + d*Tan[e + f*x])/(c - I*d)])/(c - I*d) - ((a + I*b)*Hyperge
ometric2F1[-1/2, 1, 1/2, (c + d*Tan[e + f*x])/(c + I*d)])/(c + I*d)))/(f*Sqrt[c + d*Tan[e + f*x]])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))/(c+d*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))/(c+d*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.25, size = 7951, normalized size = 57.62 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))/(c+d*tan(f*x+e))^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))/(c+d*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(d-c>0)', see `assume?` for mor
e details)Is d-c positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 11.43, size = 5737, normalized size = 41.57 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(e + f*x))/(c + d*tan(e + f*x))^(3/2),x)

[Out]

(log(- (((c + d*tan(e + f*x))^(1/2)*(16*b^2*d^10*f^3 + 32*b^2*c^2*d^8*f^3 - 32*b^2*c^6*d^4*f^3 - 16*b^2*c^8*d^
2*f^3) + ((((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) + 4*b^2*c^3*f^2 - 12*b^2*c*d^2*f
^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2)*(32*b*d^12*f^4 + ((((96*b^4*c^2*d^4*f^4 - 16*b^
4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) + 4*b^2*c^3*f^2 - 12*b^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4
+ 3*c^4*d^2*f^4))^(1/2)*(c + d*tan(e + f*x))^(1/2)*(64*c*d^12*f^5 + 320*c^3*d^10*f^5 + 640*c^5*d^8*f^5 + 640*c
^7*d^6*f^5 + 320*c^9*d^4*f^5 + 64*c^11*d^2*f^5))/4 + 96*b*c^2*d^10*f^4 + 64*b*c^4*d^8*f^4 - 64*b*c^6*d^6*f^4 -
 96*b*c^8*d^4*f^4 - 32*b*c^10*d^2*f^4))/4)*(((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2)
 + 4*b^2*c^3*f^2 - 12*b^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2))/4 - 8*b^3*c*d
^8*f^2 - 24*b^3*c^3*d^6*f^2 - 24*b^3*c^5*d^4*f^2 - 8*b^3*c^7*d^2*f^2)*(((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 -
 144*b^4*c^4*d^2*f^4)^(1/2) + 4*b^2*c^3*f^2 - 12*b^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2
*f^4))^(1/2))/4 + (log(- (((c + d*tan(e + f*x))^(1/2)*(16*b^2*d^10*f^3 + 32*b^2*c^2*d^8*f^3 - 32*b^2*c^6*d^4*f
^3 - 16*b^2*c^8*d^2*f^3) + ((-((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) - 4*b^2*c^3*f
^2 + 12*b^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2)*(32*b*d^12*f^4 + ((-((96*b^4
*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) - 4*b^2*c^3*f^2 + 12*b^2*c*d^2*f^2)/(c^6*f^4 + d^6*
f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2)*(c + d*tan(e + f*x))^(1/2)*(64*c*d^12*f^5 + 320*c^3*d^10*f^5 + 640
*c^5*d^8*f^5 + 640*c^7*d^6*f^5 + 320*c^9*d^4*f^5 + 64*c^11*d^2*f^5))/4 + 96*b*c^2*d^10*f^4 + 64*b*c^4*d^8*f^4
- 64*b*c^6*d^6*f^4 - 96*b*c^8*d^4*f^4 - 32*b*c^10*d^2*f^4))/4)*(-((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b
^4*c^4*d^2*f^4)^(1/2) - 4*b^2*c^3*f^2 + 12*b^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))
^(1/2))/4 - 8*b^3*c*d^8*f^2 - 24*b^3*c^3*d^6*f^2 - 24*b^3*c^5*d^4*f^2 - 8*b^3*c^7*d^2*f^2)*(-((96*b^4*c^2*d^4*
f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) - 4*b^2*c^3*f^2 + 12*b^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c
^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2))/4 - log(((c + d*tan(e + f*x))^(1/2)*(16*b^2*d^10*f^3 + 32*b^2*c^2*d^8*f^3
- 32*b^2*c^6*d^4*f^3 - 16*b^2*c^8*d^2*f^3) + (((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/
2) + 4*b^2*c^3*f^2 - 12*b^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2)*((((
96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) + 4*b^2*c^3*f^2 - 12*b^2*c*d^2*f^2)/(16*c^6*f
^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2)*(c + d*tan(e + f*x))^(1/2)*(64*c*d^12*f^5 + 320*c^3*
d^10*f^5 + 640*c^5*d^8*f^5 + 640*c^7*d^6*f^5 + 320*c^9*d^4*f^5 + 64*c^11*d^2*f^5) - 32*b*d^12*f^4 - 96*b*c^2*d
^10*f^4 - 64*b*c^4*d^8*f^4 + 64*b*c^6*d^6*f^4 + 96*b*c^8*d^4*f^4 + 32*b*c^10*d^2*f^4))*(((96*b^4*c^2*d^4*f^4 -
 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) + 4*b^2*c^3*f^2 - 12*b^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48
*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2) - 8*b^3*c*d^8*f^2 - 24*b^3*c^3*d^6*f^2 - 24*b^3*c^5*d^4*f^2 - 8*b^3*c^7*
d^2*f^2)*(((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) + 4*b^2*c^3*f^2 - 12*b^2*c*d^2*f^
2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2) - log(((c + d*tan(e + f*x))^(1/2)*(16*b^
2*d^10*f^3 + 32*b^2*c^2*d^8*f^3 - 32*b^2*c^6*d^4*f^3 - 16*b^2*c^8*d^2*f^3) + (-((96*b^4*c^2*d^4*f^4 - 16*b^4*d
^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) - 4*b^2*c^3*f^2 + 12*b^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*
f^4 + 48*c^4*d^2*f^4))^(1/2)*((-((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) - 4*b^2*c^3
*f^2 + 12*b^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2)*(c + d*tan(e + f*x
))^(1/2)*(64*c*d^12*f^5 + 320*c^3*d^10*f^5 + 640*c^5*d^8*f^5 + 640*c^7*d^6*f^5 + 320*c^9*d^4*f^5 + 64*c^11*d^2
*f^5) - 32*b*d^12*f^4 - 96*b*c^2*d^10*f^4 - 64*b*c^4*d^8*f^4 + 64*b*c^6*d^6*f^4 + 96*b*c^8*d^4*f^4 + 32*b*c^10
*d^2*f^4))*(-((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/2) - 4*b^2*c^3*f^2 + 12*b^2*c*d^2
*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2) - 8*b^3*c*d^8*f^2 - 24*b^3*c^3*d^6*f^
2 - 24*b^3*c^5*d^4*f^2 - 8*b^3*c^7*d^2*f^2)*(-((96*b^4*c^2*d^4*f^4 - 16*b^4*d^6*f^4 - 144*b^4*c^4*d^2*f^4)^(1/
2) - 4*b^2*c^3*f^2 + 12*b^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2) + (l
og(((((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f^4)^(1/2) - 4*a^2*c^3*f^2 + 12*a^2*c*d^2*f^2)/(c
^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2)*((c + d*tan(e + f*x))^(1/2)*(16*a^2*d^10*f^3 + 32*a^2
*c^2*d^8*f^3 - 32*a^2*c^6*d^4*f^3 - 16*a^2*c^8*d^2*f^3) - ((((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^
4*d^2*f^4)^(1/2) - 4*a^2*c^3*f^2 + 12*a^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2
)*(((((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f^4)^(1/2) - 4*a^2*c^3*f^2 + 12*a^2*c*d^2*f^2)/(c
^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2)*(c + d*tan(e + f*x))^(1/2)*(64*c*d^12*f^5 + 320*c^3*d
^10*f^5 + 640*c^5*d^8*f^5 + 640*c^7*d^6*f^5 + 320*c^9*d^4*f^5 + 64*c^11*d^2*f^5))/4 + 256*a*c^3*d^9*f^4 + 384*
a*c^5*d^7*f^4 + 256*a*c^7*d^5*f^4 + 64*a*c^9*d^3*f^4 + 64*a*c*d^11*f^4))/4))/4 + 8*a^3*d^9*f^2 + 24*a^3*c^2*d^
7*f^2 + 24*a^3*c^4*d^5*f^2 + 8*a^3*c^6*d^3*f^2)*(((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f^4)^
(1/2) - 4*a^2*c^3*f^2 + 12*a^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2))/4 + (log
(((-((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f^4)^(1/2) + 4*a^2*c^3*f^2 - 12*a^2*c*d^2*f^2)/(c^
6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2)*((c + d*tan(e + f*x))^(1/2)*(16*a^2*d^10*f^3 + 32*a^2*
c^2*d^8*f^3 - 32*a^2*c^6*d^4*f^3 - 16*a^2*c^8*d^2*f^3) - ((-((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^
4*d^2*f^4)^(1/2) + 4*a^2*c^3*f^2 - 12*a^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2
)*(((-((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f^4)^(1/2) + 4*a^2*c^3*f^2 - 12*a^2*c*d^2*f^2)/(
c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2)*(c + d*tan(e + f*x))^(1/2)*(64*c*d^12*f^5 + 320*c^3*
d^10*f^5 + 640*c^5*d^8*f^5 + 640*c^7*d^6*f^5 + 320*c^9*d^4*f^5 + 64*c^11*d^2*f^5))/4 + 256*a*c^3*d^9*f^4 + 384
*a*c^5*d^7*f^4 + 256*a*c^7*d^5*f^4 + 64*a*c^9*d^3*f^4 + 64*a*c*d^11*f^4))/4))/4 + 8*a^3*d^9*f^2 + 24*a^3*c^2*d
^7*f^2 + 24*a^3*c^4*d^5*f^2 + 8*a^3*c^6*d^3*f^2)*(-((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f^4
)^(1/2) + 4*a^2*c^3*f^2 - 12*a^2*c*d^2*f^2)/(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4))^(1/2))/4 - lo
g(8*a^3*d^9*f^2 - (((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f^4)^(1/2) - 4*a^2*c^3*f^2 + 12*a^2
*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2)*((c + d*tan(e + f*x))^(1/2)*(16
*a^2*d^10*f^3 + 32*a^2*c^2*d^8*f^3 - 32*a^2*c^6*d^4*f^3 - 16*a^2*c^8*d^2*f^3) + (((96*a^4*c^2*d^4*f^4 - 16*a^4
*d^6*f^4 - 144*a^4*c^4*d^2*f^4)^(1/2) - 4*a^2*c^3*f^2 + 12*a^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^
4*f^4 + 48*c^4*d^2*f^4))^(1/2)*(256*a*c^3*d^9*f^4 - (((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f
^4)^(1/2) - 4*a^2*c^3*f^2 + 12*a^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/
2)*(c + d*tan(e + f*x))^(1/2)*(64*c*d^12*f^5 + 320*c^3*d^10*f^5 + 640*c^5*d^8*f^5 + 640*c^7*d^6*f^5 + 320*c^9*
d^4*f^5 + 64*c^11*d^2*f^5) + 384*a*c^5*d^7*f^4 + 256*a*c^7*d^5*f^4 + 64*a*c^9*d^3*f^4 + 64*a*c*d^11*f^4)) + 24
*a^3*c^2*d^7*f^2 + 24*a^3*c^4*d^5*f^2 + 8*a^3*c^6*d^3*f^2)*(((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^
4*d^2*f^4)^(1/2) - 4*a^2*c^3*f^2 + 12*a^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^
4))^(1/2) - log(8*a^3*d^9*f^2 - (-((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f^4)^(1/2) + 4*a^2*c
^3*f^2 - 12*a^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2)*((c + d*tan(e +
f*x))^(1/2)*(16*a^2*d^10*f^3 + 32*a^2*c^2*d^8*f^3 - 32*a^2*c^6*d^4*f^3 - 16*a^2*c^8*d^2*f^3) + (-((96*a^4*c^2*
d^4*f^4 - 16*a^4*d^6*f^4 - 144*a^4*c^4*d^2*f^4)^(1/2) + 4*a^2*c^3*f^2 - 12*a^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6
*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4))^(1/2)*(256*a*c^3*d^9*f^4 - (-((96*a^4*c^2*d^4*f^4 - 16*a^4*d^6*f^4 -
144*a^4*c^4*d^2*f^4)^(1/2) + 4*a^2*c^3*f^2 - 12*a^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*
c^4*d^2*f^4))^(1/2)*(c + d*tan(e + f*x))^(1/2)*(64*c*d^12*f^5 + 320*c^3*d^10*f^5 + 640*c^5*d^8*f^5 + 640*c^7*d
^6*f^5 + 320*c^9*d^4*f^5 + 64*c^11*d^2*f^5) + 384*a*c^5*d^7*f^4 + 256*a*c^7*d^5*f^4 + 64*a*c^9*d^3*f^4 + 64*a*
c*d^11*f^4)) + 24*a^3*c^2*d^7*f^2 + 24*a^3*c^4*d^5*f^2 + 8*a^3*c^6*d^3*f^2)*(-((96*a^4*c^2*d^4*f^4 - 16*a^4*d^
6*f^4 - 144*a^4*c^4*d^2*f^4)^(1/2) + 4*a^2*c^3*f^2 - 12*a^2*c*d^2*f^2)/(16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f
^4 + 48*c^4*d^2*f^4))^(1/2) - (2*a*d)/(f*(c^2 + d^2)*(c + d*tan(e + f*x))^(1/2)) + (2*b*c)/(f*(c^2 + d^2)*(c +
 d*tan(e + f*x))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \tan {\left (e + f x \right )}}{\left (c + d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))/(c+d*tan(f*x+e))**(3/2),x)

[Out]

Integral((a + b*tan(e + f*x))/(c + d*tan(e + f*x))**(3/2), x)

________________________________________________________________________________________